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Rectangular billiard in the presence of a flux line
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We analyze the quantum spectrum of a rectangular billiard coupled to flux line. The nearest
neighbor spacing distribution shows a transition from Poisson to almost Wigner distribution as the
flux parameter is varied even though classically the system remains pseudointegrable and nonchaotic.
In fact, the level statistics do not display any generic behavior. The calculations presented here are
simple and avoid the complexity involved in modeling the singular quantum billiard problem.
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I. INTRODUCTION

The statistical properties of quantum spectra of clas-
sically chaotic systems has attracted much interest in re-
cent years. One method of analyzing the quantum spec-
trum is through the analysis of nearest neighbor spacing
(NNS) distributions. For a given sequence of levels {E;},
the NNS is defined through the unfolded level spacings

Siy
si = (Eip1 — Ei)g(Ei), ¥

where g(E;) is the average density of the quantum states
evaluated at energy E;. The spacings s;, thus gener-
ated, are distributed in various bins to yield the so-called
P(s) distribution. It is conjectured that P(s) distribution
is Poisson for classically integrable systems and Wigner
(Gaussian orthogonal ensemble, GOE) for time-reversal
(T) invariant classically chaotic systems [1] and has been
confirmed by various numerical studies [2]. However, ex-
ceptions to this conjecture have been pointed out by sev-
eral authors, the most dramatic one being the occurrence
of Wigner distribution for a one-dimensional system, that
is obviously integrable [3].

There are, however, classical systems that are not fully
integrable nor do they display a fully developed classical
chaos, so-called pseudointegrable systems [4] for which
some exact results have been derived only recently [5].
The level statistics of these systems, in general, do not
conform to a generic situation. In particular there is a
growing interest on the singular billiard [6—8] where the
spectral statistics obeys Wigner distribution despite the
fact that the underlying dynamics is regular except at one
point (measure zero). It has been, therefore, remarked
in this context that the classical dynamics has no corre-
lation with the level statistics of the quantum problem
[7], since the semiclassical limit is valid only as E — oo
[6]. Obtaining the spectrum of the Hamiltonian of a sin-
gular billiard, however, is a difficult task and one has to
employ the self-adjoint extension theory [6]. In addition,
the origin and the physical interpretation of the coupling
parameter that arises in this context remains obscure. In
what follows we explore the relation between classical in-
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tegrability properties and the quantum NNS distribution
in the context of the so-called Aharanov-Bohm billiard
where the computation can be done without the compli-
cated machinery needed for the singular billiard.

Our system consists of a particle in a rectangular en-
closure in two dimensions and coupled to a flux line per-
pendicular to the plane of motion located at the origin
which is taken to be the center of the rectangle. This
is, of course, equivalent to a charged particle enclosed by
a rectangular boundary interacting with magnetic field
of an infinitely thin and long solenoid enclosing a finite
flux. There are several points in favor of considering this
system. (i) The system belongs to the class of the so-
called pseudointegrable systems, i.e., systems that are
classically integrable but are mot integrable by action-
angle coordinates [4,9]. The system is not chaotic and
while it shares common features with the singular bil-
liards it is much simpler to analyze both analytically and
numerically. (ii) The symmetries of the system are also
interesting in that while the time-reversal invariance is
not respected a combination of time reversal and space
reflection is respected. Consequently, it does admit an
antiunitary symmetry. The relevence of such a symmetry
has been noted by Robnik and Berry [10] when the sys-
tem is classically chaotic in addition. (iii) In this system
the pseudointegrability aspects and the boundary aspects
are well seperated. Consequently, it is straightforward to
consider variations of the boundary and/or simple mod-
ifications of the Hamiltonian. This allows one to explore
the relation of pseudointegrability and the NNS distribu-
tion, if there is any, more readily. (iv) While the system
has been considered previously in a variety of theoreti-
cal contexts [10-12], recent experimental advances with
quantum dots may, in fact, make it experimentally ac-
cessible.

However, our principle reason to study this system
is because it is simple and flexible enough to allow the
exploration of any possible connection between classical
properties and their quantum manifestation as reflected
in the NNS distribution.

The paper is organized as follows: In Sec. II we discuss
the classical aspects of the system including in particular
the effect of the flux line on classical orbits both in the
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configuration space and phase space. We also explain the
notion of pseudointegrability. In Sec. III we discuss the
symmetries and use them to simplify the diagonalization
problem. We describe our computations and present our
results on the quantum spectrum and the NNS distribu-
tion. The last section contains a discussion of our results
together with a comparison with the Aharanov-Bohm bil-
liard in other contexts.

II. CLASSICAL ANALYSIS

The two-dimensional Lagrangian describing the mo-
tion of a particle coupled to a flux line at the origin is
given by,

N T Ty — y&
L(z,y,,9) = 5[d” +§°] tor e (2)
where a (which is dimensionless) represents the coupling
of the particle to the flux line. We have set the mass of
the particle m = 1 (and & = 1 = c hereafter). In polar
coordinates,

L= %[fz + 1267 + ad. 3)

The classical action is manifestly invariant under the
combined operation of time reversal and parity (reflection
of the z or y axis). This is manifested as the antiunitary
symmetry at the quantum level as alluded to in the in-
troduction. Since L changes only by a total derivative,
the Euler-Lagrange equations of motion are unchanged,
that is, # = 0 = §. The canonical momentum 7 is given

by,
. Y
pa.‘:m-aﬁv (4)
. x
Py=y+ar_27 (5)

and the Hamiltonian may be written as,

-,

1 e — 1
H=§w+A]2— u+a2

r2 2r2’

(6)

(P2 +pl)+a

1
2

where

A, = aeijr'j/7"2 , €12 = —€31 =1

which is like a vector potential (Aharanov-Bohm-type).
The corresponding magnetic field B = aé2(7) is singular
at the origin. The flux « is, however, finite but arbitrary
and does not affect the quantization even when it is not
an integer. Notice that from equations of motion, there
are still two constants of motion, namely 22 and 92 (not
Z and ¢ as the equations of motion suggest since at every
reflection there is a change of sign). However the Poisson
brackets {H, (p, + Az)?} and {H, (py + A,)?} vanish ev-
erywhere except at the origin where they diverge. (It is
in this sense that we call the system pseudointegrable.)
In other words, if we took the usual phase space of a

particle in a rectangle and remove the region ¥ = 0 (a
two-dimensional plane in the phase space) then the dy-
namical system is integrable in that there exist two con-
stants of motion in involution everywhere in the phase
space.

The removal of regions has the following effect on the
classical orbits in the configuration space. The Euler-
Langrange equations being independent of o imply that
classical trajectories are straight lines reflecting at the
walls. The orbits that avoid the origin are completely
unaffected by the o dependent term. However, those
classical orbits that head towards the origin get reflected
back. This can be seen explicitly by using a smeared ¢
function for the magnetic field. For example by taking

2

A, =0, Agz%(l—e—%), (7)

the magnetic field is given by,

2 2
B(r) = ?O‘e—r.

This reduces to the case under consideration when € is
taken to zero. By considering orbits that begin for “large
r” and head towards the origin and computing their scat-
tering angle in the limit of € — O one sees that the scat-
tering angle is w. This is also independent of « as long
as a # 0.

Thus for nonzero a one can think of the system as a
rectangular billiard with a reflecting point at the origin.
This feature is independent of a. For all nonzero values
of o precisely the same set of classical orbits is affected in
precisely the same « independent manner. Note however
that the classical action does have an explicit & depen-
dence.

In the phase space the orbits themselves do depend on
a. The Hamilton’s equations of motion are

2
. 5 TYDPa TPy Py 2T
P = 2 4 -2« 4 +ar—2+a g (8)
2
. TYPy Y’Pz  Pe | 2y
py——2a 1‘4 +2a—;z~-—ar—2+a 77, (9)
and &,y are given by Eq. (4) and Eq. (5). From the
equations of motion in phase space it follows,
z(t) = zo + ust, (10)
y(t) = yo + uyt, (11)
y(t
Pe(t) = uy — ®) (12)

“22(0) + 922
z(t) (13)

R A RO
Therefore, the phase space trajectories depend on a. No-
tice that the orbits that do not pass through 7 = 0 and
are periodic in configuration space are also periodic in
phase space. However periodic orbits in configuration
space which reflect at 7 = 0 are not periodic orbits in
phase space.

Thus even for classical phase space orbits we can see
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that for all @ # 0 exactly the same class of classical
orbits are affected though they are now affected in an «
dependent way. This indeed shows up in the quantum
spectrum as we will see in the next section.

III. SPECTRAL STATISTICS

We now study the quantum spectrum of the system
when the particle is confined within rectangular bound-
aries, —a < z < a and —b < y < b. Similar quantal
studies on the singular rectangular billiards have lead
to anomalies in the spectral statistics as mentioned ear-
lier. Unlike these systems, where one needs to model
the singular interaction, we have a continuous parameter
a through which we can analyze the spectral flow and
statistics. First, a few observations.

Let H(c) be the Hamiltonian of Eq. (6) and let P
denote either of the unitary operators implementing the
reflections in the z and y axis. It follows immediately
that,

P H(a) P! = H(—a). (14)

Therefore, if ¥ is an eigenfunction of H(a) with eigen-
value E, then P() is an eigenfunction of H(—a) with the
same eigenvalue and conversely. Since the Hamiltonian is
a positive definite operator, there are no zero eigenvalues
and the spectra of H(a) and H(—a) are identical. We
can, therefore, confine our attention to positive values of
a (say).

The Hamiltonian of the system [Eq. (6)] is not invari-
ant under either time reversal or parity but is invariant
under a combined operation of both. This has its impli-
cations on the spectrum of states. For any value of a,
the Hamiltonian is rotationally invariant but the bound-
ary is not. However, rotation through 7 or equivalently
inversion leaves both the Hamiltonian and the bound-
ary invariant. Comnsequently, the state space H can be
expressed as

H= %even ® %odd’ (15)

where Heven and Hoqq are subspaces with “inversion par-
ity” +1 and —1, respectively. The Hamiltonian for each o
can, therefore, be diagonalized in each of the subspaces
separately. One can easily construct unitary operators
that will map the even and the odd subspaces onto each
other. For instance, multiplication by e**® will inter-
change the subspaces for any odd integer k£ while for even
integer k it will leave each subspace invariant. Here 6 is
the polar coordinate.
Next we observe that

H(a) [ €7 9(z,y) | = e [ H(a = B) 9(z,y) |. (16)

Choosing 3 to be + 1 or + 2 one can see the following
properties of the eigenvalues of the Hamiltonian:

ESV*®(o)) = Ezdd(a + 1), (17)
Ezdd/even(a) — Ezdd/even(a + 2) (18)

Consequently, it is sufficient to consider diagonalization

of the Hamiltonian in any one of the subspaces.

For numerical calculations we need to choose a basis
in the state space. We choose it to be the eigenbasis
of H(a = 0) so that for small values of a one has a
handle over the eigenvalues. Further, the fact that the
basis states are independent of a simplifies the numerical
computations.

The eigenenergies when a = 0 are given by

w2 [m2 n?
E(m,n) = ry l:;.‘,— + Z:;] (19)

and the eigenstates are (m,n positive), for Heven,

. /mwx\ . [Ny
o = (7 i (52).

m even, n even, (20)

U n(z,y) = Acos (%) cos (:n_;%y) ,

m odd, n odd, (21)

and for Hoda,

. (mmz
Von(z,y) = Asin (_2(1_) cos

(%)
n odd, (22)

Un(z,y) = Acos (%f) sin (%) ,

m even,

m odd, n even, (23)

where A(= 1/vab) is the normalization factor. For
a # 0, we diagonalize the full Hamiltonian [Eq. (6)] in a
basis spanned by the eigenstates of the rectangular bil-
liard. Because of the observations above, we need to
consider only the even or the odd subspaces. We choose
to diagonalize H () in the odd subspace for the following
reason.

The singular nature of the potential when o # 0 im-
plies that the exact wave functions must vanish at the
origin. In fact, they must vanish as 7/*l as » — 0. Only
in the odd subspace do the basis states vanish as » — 0,
in fact, faster than required for | « | < 1. We can,
therefore, expect faster improvement in the eigenenergies
as basis size is increased. Since the basis states chosen
are eigenstates of H(0), we limit the diagonalization to
values of a ranging from —1 to +1.

To summarize, we diagonalize H(«) in the basis in the
odd subspace for « between —1 and +1. The results for
a between —1 and 0 correspond to the diagonalization of
H(a + 1) in the even subspace.

For the numerical calculations we have chosen a =
1,b = w/3. The results have been checked for the other
values of a and b. For a given size of the basis we find that
typically about 30-40 % of the eigenvalues show decent
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convergence with respect to changes of basis size. We
have taken basis sizes of 200, 338, 450, and 800. Com-
parison of 450 and 800 shows that first 350 eigenvalues
change only within 1% or less. So we select 350 eigenval-
ues determined from the larger set and do the NNS anal-
ysis. The spectral flow as a functionof a (-1 < a < 1) is
shown in Fig. 1 for the lowest eigenvalues. It is obvious
that the levels are correlated as evidenced by the occur-
rence of avoided crossings. The spectrum has a reflection
symmetry around a = 0 when the range of a is chosen
to be —1 < a <1 as expected.

The results of the NNS analysis are shown in Fig. 2 in
the range 0 < a < 1 for some selected values of a. The
following interesting features can be easily seen: (i) At
o = 0 the P(s) distribution fits the Poisson distribution
as expected since the system is integrable. (ii) Again at
a = 1, the P(s) distribution closely follows the Poisson
distribution though the fit is not as good as at o = 0
due to the numerical accuracy of the eigenvalues. This
behavior is expected from Eq. (17) and Eq. (18) since the
spectrum of states at @ = 1 in the odd basis is the same as
the spectrum of states in the even basis but at a = 0, as
though the flux line is not present. This is, of course, also
true in general for all integer values of a. (iii) For generic
values of o the P(s) distribution lies in between Poisson
and Wigner distributions. At a = 1/2 the distribution is

wE

Energies

50 = =

FIG. 1. The spectrum of odd states as a function of a. First
50 energy eigenvalues are shown. The spectrum of states in
the even basis may be obtained from this by shifting a to
1+ a.

FIG. 2. The NNS distribu-
tion for the spectrum of odd
states for various values of a
as indicated against each fig-
ure. The continuous line corre-
sponds to the fit obtained from
a linear combination of Poisson
and Wigner distributions.
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closest to Wigner distribution. This fact coupled with the
interpolation property outlined above for integer values
of a, immediately suggests a form of P(s) distribution,
namely,

P 2
P(s)y=a Npe °» + (1—a) N, se w, (24)

where N;, i = p,w is the normalization factor for Pois-
son and Wigner distributions and a is obtained by fitting
the P(s) to the actual histogram plots in Fig. 2. From
the interpolating properties outlined above it is clear that
a = 1 for integer values of a and most likely a = 0 at
o = 1/2. The form of Eq. (24) suggests that we can al-
ways write a = cos?(n), where n = n(a). The periodicity
in a requires that n(a + 2) = n(a) + 2wk, where k is an
integer. We make the simplest conjecture that n(a) = ra
with no particular justification. Figure 3 shows that this
is a fairly reasonable choice. Of course, at best it is
the simplest conjecture consistent with the interpolation
properties outlined above, while the allowed parameter
space admits other choices. Therefore, the P(s) distri-
bution for the rectangular billiard in the presence of the
flux line may be analytically written as

. .2
P(S) = COsz(fn-a) Np e 7 + Sin2(7ra) N, se u.

(25)

This fit works best for o < 0.5 where the eigenvalues are
also most accurate. It is, therefore, conceivable that this
conjecture works for all &. While we did try several other
forms like s7e=*"/ 7, the above form gave good fits con-
sistent with the constraints imposed by the interpolation
properties.
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FIG. 3. The value of the fit parameter a, when the his-
tograms of Fig. 2 are fitted to a normalized linear combina-
tion of Poisson and Wigner distributions. This is compared
with cos®(mwa) shown by the continuous curve.

It is interesting to note that the maximum deviation
from the generic distribution for the rectangular billiard
occurs at @ = 1/2 because of the sin®(ra) factor. It is
curious to note that it is the same factor that appears in
the Aharanov-Bohm scattering where the scattering cross
section for a plane wave by a singular magnetic flux line is
proportional to sin®(wa)/ cos?(6/2), where 6 is the scat-
tering angle. Again the effect of scattering is maximum
at @ = 1/2. It is however not clear what the connection
is. It may be guessed that because of the interpolation
property in «, the a dependence of the properties of the
system must be through a periodic function.

Another point to note is that the large s behavior of the
NNS distributions is dominated by the tail of the Poisson
distribution when o is away from the value a = 1/2.
Finally, all the above statements apply to the spectrum
of even states due to the symmetry of the system. The
P(s) in the odd basis at some value of a goes over to
P(s) in the even basis corresponding to 1 + a.

IV. DISCUSSION

To summarize, we have analyzed a Hamiltonian sys-
tem, which is well known in several other contexts, which
describes the dynamics of a rectangular billiard in the
presence of a flux line. Even though the classical equa-
tions of motion remain unchanged, the configuration
space of the system being a rectangle with its origin re-
moved makes the system pseudointegrable. Classically
this implies that the dynamics remains unchanged except
for the set (of measure zero) of orbits passing through the
origin. This is brought about more succinctly in the clas-
sical phase space analysis. The particle plus flux compos-
ite system, however, shows nontrivial behavior through
the quantum spectrum and is a function of the coupling
of the flux line to the particle.

While it is correct to say that the spectrum depends
nontrivially on the coupling «, the changes in the NNS
distribution depend crucially on the type of boundary
chosen. We have, therefore, also studied the NNS dis-
tribution under different boundary conditions, like the
boundary removed with an oscillator confinement and
particle confined to a circular disk instead of a rectangle.
All these systems may be regarded as pseudointegrable
in the same sense as the particle confined to a rectangle.
However, the NNS distributions are dramatically differ-
ent in each of these cases:

(i) In the case of the Hamiltonian with boundary re-
moved and an oscillator term added, the system is still
pseudointegrable classically and the quantum spectrum is
known exactly. The NNS carried out in each partial wave,
however, does not deviate from the case when a = 0. In
fact as is well known it is neither a Poisson distribution
nor a Wigner distribution. In a way this is obvious since
the spectrum can be obtained from the large distance
behavior which washes out the small distance behavior
where pseudointegrability shows up.

(ii) If we take a circular disk instead of the rectangular
boundary the spectrum is obtained as the zeros of the
Bessel function Jj;_,| in each partial wave. The spec-
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trum, therefore, has nontrivial behavior as a function of
a. However, the NNS distribution is essentially the same
as when a = 0, that is, it is a § function as in the case of
a one-dimensional oscillator.

Note that in both of the above cases NNS statistics is
done in each partial wave, which effectively reduces the
system to a one-dimensional system. We have chosen to
analyze the NNS in each symmetry class (or each partial
wave) separately as in the case of the rectangular bil-
liard so that we are able to compare the two systems. In
general, however, a Poisson distribution may be obtained
for such systems only when the spectrum includes all the
symmetry classes. There is no effect on the NNS statis-
tics in the above examples even though the spectrum is
a dependent. The effect of the flux line on the spectrum
however shows differently in these systems. It has been
shown recently [13] that the presence of the flux line in-
troduces nontrivial changes in the density states of the
system. In particular the oscillating part of the density
of states of the system cannot be completely explained
using the simple periodic orbit theory (POT). One will
have to modify the standard POT to include quantum A
corrections in order to explain the density of states. In-
terestingly enough the amplitude of the oscillating part
of the density states is again related to the cross section
of Aharanov-Bohm scattering.

(iii) The case of Aharanov-Bohm billiard in compli-
cated enclosures has been analyzed before in [10]. While
the system continues to be pseudointegrable, the NNS

distribution is either the one corresponding to GOE or
the Gaussian unitary ensemble (GUE). Here it appears
that the boundary effects on the NNS distribution are
much stronger than the pseudointegrability.

(iv) Our system with rectangular boundary is a hybrid.
Unlike the above examples it is neither reducible to an
effectively one-dimensional system nor are the boundary
effects too strong. The NNS distribution thus reflects the
pseudointegrability aspect primarily. As seen in the last
section, however, it does show nongeneric features.

It appears, therefore, that the cases where NNS shows
a relation to pseudointegrability are those for which
the system is neither reducible effectively to a one-
dimensional system nor are the boundary effects too
strong.

Therefore, the connection between classical properties
such as integrability, chaos, and their quantum manifes-
tations remains elusive. While in the case of classically
chaotic systems, with or without 7T invariance, there ap-
pears to be a corresponding universal quantum signature
in terms of their universal P(s) distributions (GOE or
GUE) the same type of connection does not seem to ex-
ist for pseudointegrable and probably integrable systems.
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